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Abstract 

The relative stability of three-dimensional nets formed by gallium or aluminium in intermetallic phases has been investigated 
within the simple tight-binding Hiickel model. In order to compare structures with different coordination numbers, the bond 
lengths of the nets have been changed according to the structural energy difference theorem. The structural stability as a 
function of the electron concentration per atom agrees well with the composition of the correspondent intermetallic compounds. 
The third and fourth moments of the density of states explain qualitatively the energy difference curves but are not sufficient 
to reproduce all the stability trends. 
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1. Introduction 

Intermetallic phases formed between group 13 me- 
tallic elements (E13) ( i.e. Al, Ga, In, Tl) and one or 
more of the more electropositive alkali or alkali earth 
metals show a rich variety of very often complex struc- 
tures. In most cases this complexity originates in the 
substructure of the El3 component, where short dis- 
tances between El3 atoms are typical. Although metallic 
conductivity is found for the majority of these com- 
pounds, covalent bonding plays a pivotal role for the 
substructures of the El3 elements. This induces a strong 
relationship between the geometrical structure and the 
valence electron concentration (VEC). The simple 
Zintl-Klemm concept, which is very successful for the 
interpretation of such relationships in semiconducting 
Zintl phases, is often at its limits for these intermetallic 
compounds. However, it is still reasonable to describe 
the El3 substructure as a polyanion and investigate 
the optimal VEC for the particular geometry of the 
substructure. 

One may roughly distinguish between three classes 
of El3 substructures in the binary compounds: in the 
first class El3 atoms form frameworks of clusters, typical 
of alkali metal gallides [l], in the second class El3 
atoms form networks apparently without clusters, oc- 
curring in alkali earth aluminides and gallides, and in 
the third class substructures consist of isolated clusters, 
as found in the recently reported alkali indides and 
thallides [2,3]. 
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The first group has been examined theoretically by 
Burdett and Canadell [4]: when the deltahedral clusters 
are linked together, the electronic requirement can be 
understood by applying Wade’s rules [5] for the cluster 
units and regarding the linkage either as two-elec- 
tron-two-centre (2e2c) or 2e3c bonding. An electron- 
counting scheme for fused clusters, however, is far more 
complex and in some cases still not applicable. The 
fusion of clusters or cluster fragments reveal the tran- 
sition to the open (but still electron-deficient) network 
structures corresponding to the second group. The 
relationship between geometrical structure and VEC 
is much more hidden in such structures. This is because 
the fragmentation and associated assignment of definite 
electron numbers for particular structure units are from 
an electronic point of view often ambiguous and not 
satisfactory. 

For a theoretical investigation of electron-deficient 
network structures the method of moments [6] appeals 
to be very useful. It allows the interpretation of structural 
trends without an orbital picture. Within the second 
group of substructures an increase in VEC induces the 
transition from electron-deficient networks to those 
obeying the octet rule (VEC > 4). The latter structures 
are sometimes classified as valency compounds [7]. 

In this paper we have examined the relationship 
between geometrical structure and VEC along this 
transition. At the beginning we introduce a number of 
three-dimensional (3D) nets formed by El3 atoms and 
stress the remarkable geometrical relations between 
them. Then we outline the calculation procedure for 
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(b) 

Fig. 1. (a) The triangular 36 net. (b) The corrugated 36 net in the 
cr-Ga structure. (c) Stacking of the corrugated 36 nets (black) via 
short bonds (grey) leads to the n-Ga structure. 

the determination of the structural stability within the 
tight-binding (TB) theory and present the obtained 
energy difference curves as a function of VEC. Finally 

we try to correlate the structural trends with the be- 
haviour of the third and fourth moments of the density 
of states [8]. 

Fig. l(a) shows the triangular 36 net formed by closest 
packing of equivalent spheres. It is the building block 
of the close-packed metallic structure types, in the 
simplest cases f.c.c. and h.c.p. Considering only sp- 
bonded systems, these structures are found to be stable 
for fairly low VEC. 

The more electron-rich metal gallium adopts the (Y- 
Ga structure [9]. The main structural unit is a corrugated 
36 net (Fig. l(b)) which can be derived from the plane 
net (Fig. l(a)) by a simple distortion, If the dark spheres 
of Fig. l(b) are lowered below the paper plane and 
the light ones are raised by the same amount, the 
puckering is controlled by only one parameter. Lee et 
al. [lo] were able to show that the degree of puckering 
as a function of band filling agrees exactly with the 
electron concentration of Ga. The corrugated layers 
are connected by the shortest bonds in the structure 
(Fig. l(c)). An attractive interpretation of the a-Ga 
structure is to relate it to the boron structure [ll]. 
The short distances in the a-Ga structure then cor- 
respond to the terminal bonds of the Blz icosahedra 
and can be regarded as 2e2c bonds. The electronic 
states related to the buckled layers are delocalized and 
are responsible for the metallic behaviour [12]. The 
latter corresponds to the multicentre bonding in the 
framework of the B,, icosahedra. In conclusion, the 

(a) 

Fig. 2. (a) The 2D layer of pyramids formed by Al atoms in BaAI,. (b) Stacking of the 2D layers (black) in the Al network of BaAI,. (c) 
The Ga network in the MgGa2 structure. Chains of the BaAI, structure (black) are connected directly or by trigonal-planar-coordinated Ga 
atoms. 
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Fig. 3. (a) The 2D building block of the Ga network in Mg,Ga5. It consists of pyramids which are linked by bonds between the basal atoms, 
in contrast with the 2D layer in the BaAl, structure where the pyramids are condensed. (b) Stacking of the 2D units in the Ga network in 

Fig. 4. (a) The Al network in SrAl,. Longer bonds (grey) connect 
the slightly puckered layers of six-membered rings (black). (b) The 
Ga network in CaSGas. 2D pieces of the SrAI, structure (black) are 
linked via two-bonded Ga atoms. 

cu-Ga structure shows a transition from the close-packed 
metals to a valency compound. 

Fig. 2(a) shows the building unit of the Al substructure 
in BaAI, [13]. One kind of Al atoms (black spheres 
in Fig. 2(a)), which are called basal aluminium atoms, 

form a quadratic net with long non-bonding distances. 
The squares are capped alternately above (white spheres 
in Fig. 2(a)) and below (grey spheres in Fig. 2(a)) with 
the other kind of Al atoms, the apical ones. This 
capping leads to a layer of pyramids. The final network 
of the Al substructure results when these layers are 
connected by bonds between apical atoms which are 
located on top of each other (Fig. 2(b)). SrAl,, BaGa, 
and SrGa, also crystallize in this structure type. The- 
oretical investigations [14] suggested a 2e2c bond be- 
tween the layers connecting apical atoms and multi- 
centre electron-deficient bonding in the pyramids 
between one apical and four basal atoms. 

The Ga substructure of MgGa, [15] (Fig. 2(c)) is 
strikingly similar to the Al substructure in BaAl,: chains 
of top-connected pyramids are linked together either 
directly or via trigonal-planar-coordinated Ga atoms. 

In the Ga substructure of Mg,Ga, 1161 the pyramid 
is again the central structural unit. Fig. 3(a) shows the 
pyramid-containing layer. In contrast with the BaAl, 
structure, the apical atoms (black spheres in Fig. 3(a)) 
have about the same height and the basal Ga atoms 
are situated above and below the paper plane (white 
and grey spheres in Fig. 3(a) respectively). Although 
the pyramids are arranged as in the BaAl, structure, 
they do not have common edges but are linked by 
additional bonds. When only considering the short 
distances in the partial structure, the layers consist of 
six- and four-membered rings in the ratio 2:l. The 
linkage of these two-dimensional (2D) nets is made by 
bonds between basal atoms located on top of each 
other (Fig. 3(b)). 

SrAl, [17] crystallizes in the CeCu, structure type. 
The Al atoms form slightly puckered six-ring nets with 
almost identical bond lengths (Fig. 4(a)). Longer bonds 



U. HduJemann, R. Nesper I Journal of Alloys and Compounds 218 (1995) 244-254 247 

(b) 
/ 

(C ) 

Fig. 5. (a) The diamond structure. (b) The Ga network in the MgGa structure. (c) The Ga network in the MgGa structure as a defect 
variant of the diamond structure. Upon putting atoms (grey spheres) in the voids of the Ga substructure in MgGa (black), the diamond 
structure emerges. 

connect these nets, leading to zigzag chains of four 
membered rings. All the Al atoms have slightly distorted 
trigonal pyramids as coordination polyhedra. 

In the Ga substructure of Ca,Ga, [18] one can find 
2D pieces of the Al substructure of St-Al,. These stair- 
like pieces are built alternately of zigzag chains of four- 
membered rings and chains of six-membered rings (black 
part of the structure in Fig. 4(b)). The 2D units are 
linked via two-bonded Ga atoms. 

LiGa [19] crystallizes in the NaTl structure type, in 
which the Ga atoms form the diamond structure (Fig. 
S(a)). 

The Ga substructure in MgGa [20] is shown in Fig. 
5(b). All Ga atoms are three coordinated and form 
puckered eight-membered rings which are linked to a 
3D network. Upon putting an additional atom in the 
middle of such an eight-membered ring (light spheres 
in Fig. 5(c)), the diamond structure appears (Fig. 5(a)). 
Therefore this Ga substructure can be regarded as a 
defect variant of the diamond structure obtained by 
removing one-fifth of the atoms in the diamond structure 
WI. 

2. Calculational methods 

The investigation of the structural stability of the 
introduced network structures has been performed 
within the framework of simple Hiickel theory [22]. 

Hence one has to solve the secular determinant 

IH,(Q - Eli= 0 (1) 

where I is the unit matrix. The hamiltonian matrix 
elements are the integrals H,= (xilHjxj), where xi is 
a_ Bloch sum of an atomic basis orbital r$i located at 
Ri: 

xi(f-iii) = 7 exp(i~.i?&#@-rT,) (2) 

The summation over all uni_t cells n (practically trun- 
cated) and the wavevector k are consequences of the 
translational symmetry. 

In Htickel theory the atomic orbitals +i are approx- 
imated by Slater-type orbitals (STOs). The crucial parts 
of the hamiltonian matrix elements are the Coulomb 
integrals Hii = ( #z@#J~) and the resonance or hopping 
integrals Hij = ($ilfl+j,,.>. The Coulomb integrals Hii are 
estimated from relevant orbital ionization potentials. 
The resonance integrals Hi,. are approximated by the 
Wolfsberg-Helmholtz formula 

Hij = $ZL!i’~j(Hii + Hjj) (3) 

where K is a constant. The overlap integrals S,= ( 4i]4j) 
have been calculated explicitly for this formula. 

All calculations have been performed with atomic 
parameters of Ga, namely ids = 1.77 and &,= 1.55 for 
the ST0 exponents and Hdds= - 14.58 eV and 
H 4P4P = -6.75 eV for the orbital energies. 
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In order to calculate relative stabilities of different 
structures, we followed the argumentation of Pettifor 
[23] by dividing the total energy per atom of any system 
with only one type of atom into a repulsive and an 
attractive part: 
~tot=yP+~band 

(4) 

The. attractive contribution is called the band energy 
Eband and is a function of the Fermi energy +: 

Eband(+) = J W(E) de 
-m 

(5) 

where n(e) is the density of states per atom of the 
system. 

The Hiickel hamiltonian does not contain any re- 
pulsive term and so E rep is not included in the solution 
of Eq. (1). A missing repulsive part in Eq. (4) can lead 
to wrong predictions when comparing structural alter- 
natives, because E ba”d favours in general structures with 
higher coordination numbers [24]. In order to cope 
with this coordination number problem, a repulsive 
part is subsequently added to the total energy. Erep is 
assumed to have pairwise character [25], namely 

which also means that Erep is proportional to the 
coordination number of atoms in the system. A rea- 
sonable estimate for the pairwise repulsive potential 
in sp-bonded systems is a quantity proportional to the 
sum of all resonance integrals between two centres 
ii and tij [25,26]: 

(P(@ -ij> a ~Hi~jmz (7) 
1, m 

The structural energy difference theorem of Pettifor 
[23] states that the energy difference between any two 
structural alternatives is approximately 

A,!?“’ = A,J?=“dlM,_” (8) 

An elegant way of satisfying the constraint hEreP =0 
in (8) is provided by the moments of the density of 
states [8]. The calculation of the second moment p2 
yields a quantity proportional to Erep owing to the 
relation b=C,,iHijz (see Eq. (13)). The definition of 
the nth moment is 

Iln= s 
E%(E) de (9) 

-m 

with n = 2 for F~. Therefore the constraint ApcL2= 0 is 
identical with hEreP = 0, where pL2 is very easily calculated 
by applying the definition (9). The relation between 
pFL2 and EreP is demonstrated in Fig. 6. It shows the 
calculated second moments for the Ga networks of a 

1.6, . 

0.6 I 
1.5 2.5 3.5 4.5 5.5 6.5 

Coordinotion number 

Fig. 6. The second moment of Ga network structures as a function 
of ECoN (271. pL2 has been normalized to the diamond structure 
formed by Ga in LiGa (ECoN=4). The Ga substructures of Li,Ga, 
and Li,Ga are also taken into account. Ga atoms form in L&Gal 
layers of six-membered puckered rings and in Li,Ga planar zigzag 
chains. 

number of compounds as a function of the coordination 
number. The coordination number is the mean coor- 
dination number of the network, calculated as the mean 
value of the coordination numbers of all different 
crystallographic sites in the network. These individual 
coordination numbers are the effective coordination 
numbers (ECoNs) defined by Hoppe [27] and calculated 
with the assumption that all atoms in the network have 
the same size. The second moment varies almost linearly 
with the network coordination number in agreement 
with Eq. (6). 

A practical way to achieve equality of the second 
moments between two structures is to change the equi- 
librium volume of one structure (and thus the Hi, in 
Eq. (3)) until the second moments are the same. This 
scaling of the overall density affects only bond lengths 
and leaves all angles unchanged. Lee and coworkers 
have introduced the expression “second-moment scal- 
ing” for this procedure and show in a series of pub- 
lications its wide range of use [10,28]. To study the 
structural energy difference hEto’ as a function of band 
filling or VEC, one has to reformulate Eq. (6) for Eband. 
Then the formula for the energy difference takes the 
form 

(10) 

CF 
N(+)=2 

f 
n(e) de 

-m 
(11) 
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is the number of electrons per atom as a function of 
the Fermi energy. Index 1 refers to a reference structure 
with its equilibrium volume. The volume of structure 
2 has been adjusted so that structure 2 has the same 
‘second moment and thus the same repulsive energy as 
the reference structure 1. The choice of a reference 
structure is arbitrary, which leads to reference-structure- 
dependent results when comparing the structural sta- 
bility of more than two structures. In order to overcome 
this drawback, the simple cubic (s.c.) structure has been 
chosen as a neutral reference for all network structures. 
The peculiarity of the S.C. structure is that its density 
of states exhibits only little structuring, i.e. no gaps or 
pseudogaps occurring in n(e) of structures with strong 
bonds or a long tail towards low energies, indicating 
a prevalence of three-membered rings. This ensures 
an almost equal influence on the various energy dif- 
ference curves and therefore a good comparability 
between them. 

In practice, cc2 values of the Ga networks occurring 
in the structures of cy-Ga, SrGa,, Mg,Ga,, MgGa,, LiGa, 
Ca,Ga, and MgGa have been calculated and the mean 
value has been taken as the quantity proportional to 
a mean Erep for all structures. In the next step the 
volumes of all networks - now including the S.C. and 
h.c.p. structures as well as the El3 substructure of 
S&l, - have been adjusted in order to match this 
mean second moment. In the third step the calculation 
of the energy differences as a function of the number 
of valence electrons per El3 atom in the network 
structures has been performed according to Eq. (10) 
with the S.C. structure as reference. 

Four examples of idealized energy difference curves 
describing the energetic difference between a structure 
and a reference structure as a function of the band 
filling are shown in Fig. 7. As a convention, the reference 
structure - represented as the zero line - is the more 
stable one of two structures for negative energy dif- 
ferences. 

AE 

Fig. 7. Energy difference curves for structures differing only in one 
particular moment w,, of the density of states from a reference 
structure. For positive values the structure with the larger I/.L,,~ is 
more stable. (Reproduced with permission from Ref. [6].) 

The behaviour of the energy difference curves can 
be interpreted in terms of the moments of the density 
of states. These moments play an important role in an 
alternative to Eq. (1) for the calculation of the density 
of states [29]. In this context n(e) is represented in 
the form of a continued fraction 

n(e)= - 1 Im a0 

?r a1 
(12) 

c+b0- 

E+bl- 
a2 

&b2--f(E) 

where f(e) is a function of E as well as the edges of 
n(e) and terminating n(e) in Eq. (12) at the second 
level. The exact calculation of n(e) requires many levels 
in the fraction, but the shapes of energy difference 
curves are usually determined by two or three levels 
[6]. The moment defined in Eq. (9) can be used for 
calculating the coefficients a, and b,, where a, requires 
the knowledge of to-do and b, that of p1-p2n+1 [30]. 
The TB Htickel hamiltonian implies the important 
relation [31] 

p”=TrH”= x Hili2...Hi,& 
il,iz....,i, (13) 

Eq. (13) states that the nth moment can be expressed 
in different paths, starting off at orbital i, and returning 
in n steps back to this orbital, each step being weighted 
with the appropriate integral Hi,,. This geometrical 
meaning also has chemical importance when expressing 
the moments with respect to a particular site rather 
than an orbital: the first moment represents only the 
atom (summation over the Coulomb integrals), the 
second moment includes together with the third moment 
the nearest-neighbour interactions and the fourth mo- 
ment also carries information about the second-nearest- 
neighbour interactions, etc. h is normalized to 1. In 
going from the first to higher moments step by step, 
information about interactions between a centre and 
its environment at an increasing distance from it is 
successively achieved. The energy difference theorem 
requires that ~~~~~ are structure invariants. Thus the 
first and most important disparative moments are Pi 
and c~q and the contributions to these moments with 
respect to atoms are shown in Fig. 8. 

The first few disparative moments control the os- 
cillatory behaviour of the energy differences curves (see 
Fig. 7 for further discussion). When two structures 
differ only in p3, three nodes appear in their energy 
difference curve and the structure with the larger 1~~1 
is the more stable at less than a half-filled band. 
Structures which are only different in p., show four 
nodes in the energy difference curve, where now the 
structure with the smaller fourth moment is maximally 
stabilized for a half-filled band. The absolute differences 
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Fig. 8. Contributions of local atomic arrangements to the third and 
fourth moments. Each line represents all possible resonance integrals 
between two atoms. 

in energy are much smaller in this case than for two 
structures differing in p3. In conclusion, the number 
of nodes of an energy difference curve usually cor- 
responds to the level n of the first disparative moment 
and the amplitude of hE decreases rapidly as n increases. 

For an interpretation of energy difference curves it 
is often sufficient to look at the differences in the third 
and fourth moments of the structures. These differences 
originate in the local structural features, namely in the 
number of three- and four-membered rings and the 
bond angles (Fig. 8). 

In particular, a large number of three-membered 
rings in a structure will have the effect of a large 1~~1. 
The form of the triangle is also of some importance. 
This has been studied on a zigzag chain of Ga atoms, 
where p3 has been calculated as a function of the bond 
angle with the constraint ApZ=O. Only resonance in- 
tegrals between atoms of an isosceles triangle have 
been taken into account (see inset in Fig. 9(a)) and 
Fig. 9(a) shows the result: 1~~~1 has a maximum for this 
system when the bond angle is around 70”, i.e. when 
the triangles are almost equilateral. 

p4 is not only dependent on the number of four- 
membered rings in a structure but is also very sensitive 
to changes in the bond angles - the zigzag chain has 
again been used as a model system for investigating 
this influence. Only those resonance integrals of the 
chain have been considered which form bonds, so that 
a variation in the bond angle does not affect pL2. The 
results depend strongly upon the chosen bond length, 
because bonds represent a direct contribution to pd. 
This contribution is also included in the calculation of 
p4 of the zigzag chain. Both effects are summarized 
in Fig. 9(b). Calculations have been performed with 
four different bond lengths. These bond lengths are in 

accordance with mean bond lengths in networks with 
coordination numbers (CNs) of about 12, 7, 4 and 3. 
First p4 increases strongly as the bond angle decreases. 
The increase in ~~ with decreasing CN is due to the 
decrease in the bond lengths of the structures when 
going to smaller CN according to the structural energy 
difference theorem. This corresponds to a normalization 
of /Jo to CN. 

50.0 120.0 II 

Bond angle [“I 

1.35 

1.25 

$ 
= 

i 1.15 
\ 

z 

1.05 . 

0.95 / 
0.0 50.0 120.0 1 

(b) 
Bond angle [“I 

Fig. 9. (a) The angle-dependent third-moment contribution of a 
triangle. The calculations have been performed with the linear zigzag 
chain as a model system. The inset shows the model system, where 
the drawn lines indicate the resonance integrals which have been 
taken into account. The values have been normalized to pL3 for a 
bond angle of 180”. (b) The two-atom fourth-moment contribution 
and the angle-dependent three-atom fourth-moment contribution. 
The different bond lengths correspond to different coordination 
numbers. The inset shows the model system, where the drawn lines 
indicate the resonance integrals which have been taken into account. 
The values have been normalized to j.c, for a bond angle of 180”. 

3. Structural trends and their origin 

Figs. 10(a) and 10(b) summarize the calculated energy 
difference curves with respect to the S.C. structure as 
reference. The great number of four-membered rings 
in the S.C. structure has the effect of a large p4 and, 
because a square represents two rectangular triangles, 
1~~1 is also quite large. The shape of the curves can 
be thought as a superposition of the idealized energy 
difference curves in Fig. 7 with three and four nodes 
for structures differing in pL3 and pd. The alteration of 
Ap3 with the increase in VEC determines the rough 
shape of the curves. Only the h.c.p. structure has a 
larger 1~~1 than the S.C. structure. It is the most stable 
structure until the valence electron concentration ex- 
ceeds two electrons per atom. Then the a-Ga structure 
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Fig. 10. (a) Energy difference curves between electron-deficient 
network structures and the SC. structure as reference. (b) Energy 
difference curves between valency network structures and the S.C. 
structure as reference. The VECs corresponding to the composition 
of the intermetallic. Compounds are marked with arrows. 

becomes more stable. The values of 1~~1 for the a-Ga 
structure, the substructure of BaAl, and the S.C. structure 
are about the same, because the energy difference 
curves are controlled by a difference in pd and thus 
exhibit four nodes. The shape of all other energy 
difference curves is determined by the larger I/.L~] of 
the S.C. structure but is also considerably modulated 
by a Ap4 curve, where the reference structure always 
has the larger pd. 

The curves of the substructures of the binary com- 
pounds have their maxima at a valence electron con- 
centration corresponding to complete electron transfer 
from the electropositive component to the more elec- 
tronegative substructure, which is in the spirit of the 
Zintl-KIemm concept. This can be interpreted such 
that the electrons occupy essentially states which con- 
tribute to the bonding of the El3 partial structure. 
The only exception is Ca,Ga,, which has its maximum 
at VEC=4.4 instead of 4.2. 

The most important moments p3 and p., as a function 
of the ECoN of the substructures are illustrated in Fig. 
11. On going from h.c.p. (ECoN= 12, not drawn) to 
the substructure of MgGa, (ECoN=4.22), 1~~1 and pb 
decrease constantly. The networks in this range are 
usually denoted as electron deficient. However, as in 
deltahedral clusters, electron deficiency is more a ter- 
minus of classification and not an actual state, because 
all the networks have their stability maximum at the 
observed VECs. At ECoN= 4 a discontinuity in the 
course of 1~~1 and especially j.~~ occurs. This corresponds 
to the transition from electron-deficient structures to 
valency compounds, which is accompanied by the open- 
ing of a broad band gap at the Fermi level. Towards 
lower ECoN 1~~1 and pq increase again, with p4 showing 
the greater variations. 

In order to examine the significance of p3 and pd 
to the energy difference curves, n(e) has been calculated 
to the second level according to Eq. (12). Therefore 
knowledge of ~0-~5 was required. Termination has 
been performed with the square root terminator [32], 
which leads to a continuous n(e). The values of th_e 
band edges have been taken from the previous k- 

dependent calculations (Eq. (1)). The result is shown 
in Figs. 12(a) and 12(b) and can be directly compared 
with Figs. 10(a) and 10(b). Knowledge of the first few 
moments together with the edges of n(c) is sufficient 
to approximate the overall shape and the amplitudes 
of the exact energy difference curves remarkably well. 
Only the very closely lying curves of the networks of 
Mg,Ga, and MgGaz are not separated sufficiently. The 
maxima, however, are not reproduced exactly until n(e) 
is calculated to eight levels. This means that the fine 
structure of n(e) is crucial for the correct maxima and 
therefore knowledge of very high moments is required. 

r I 

4.0 5.0 

Coordination Number 

I 
6.0 7.0 

Fig. 11. The third moments (upper curve) and the fourth moments 
(lower curve) of the investigated network structures as a function 
of their ECoN [27]. The values of the moments have been normalised 
to that of the sc reference structure. The values for the hcp structure 
(not drawn) are &/.L,(,.)= 1.082 and pJ~qlc~q(~r = 1.133. 
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Fig. 12. Energy difference curves from calculations based on the 
recursion method (Eq. 12, [29]). The only structure dependent 
information used for the calculations are the knowledge of /.L~ to /.L~ 
and the edges of n(c) of a particular structure. In (a) the difference 
curves between electron-deficient network structures and the SC 
structure as reference and in (b) the difference curves between 
valency network structures and the SC structure as reference are 
shown. 

When comparing the stability ranges of different 
substructures, one has to be aware that they are sta- 
bilized additionally by the interaction with the positively 
polarized alkali or alkali earth components. These 
Madelung contributions should basically affect the am- 
plitude and not the electronically controlled shape of 
the energy difference curves of the investigated E13- 
rich binary compounds. For example, the diamond 
structure formed by Ga atoms in LiGa conceals all 
other structural alternatives for a VEC around four 
electrons per atom. The size of the cationic component 
also has a contribution to the determination of a 
particular substructure, thus leading to the diversity of 
substructures in binary compounds with the same stoi- 
chiometry. This indicates clearly that the VEC is not 
the only variable when investigating absolute structural 
stabilities [33]. 

The interplay of p3 and p4, determining the ranges 
of stability as a function of the valence electron con- 
centration, has its origin in the local atomic environ- 
ments. The h.c.p. structure is dominated by the great 
number of equilateral triangles leading to a large I& 
which stabilizes this structure at low valence electron 
concentrations. Going to the cy-Ga structure, the sig- 
nificant triangles occur only in the 2D puckered layers 
(Fig. l(b)). The stacking of these layers via the short 
bonds induces skew hexagons with considerably larger 
bond angles (see Fig. 9(a)). The net effect is a reduction 
of 1~~~1 and therefore a maximal stabilization at three 
electrons per atom. On a molecular level this trend 
can be estimated even from three atom arrangements, 
namely the closed and the open three-centre bonds 
(Scheme l), where suitable electron counts are two 
and four respectively. This trend is continued in the 
substructure of BaAl,. The 2D layers of pyramids (Fig. 
2(a)) consist of even fewer triangles. The stacking of 
the layers is accompanied by the formation of hexagons 
analogous to the cx-Ga structure. Starting from the 
substructure of BaAI,, two possibilities are realized to 
reduce 11.~~1 further. In the substructure of MgGa,, 
triangle containing chains of top-connected pyramids 
are linked via hexagons. The linkage of these strands 
raises the number of hexagons considerably compared 
with the situation in the network of the BaAl, structure. 

Another possibility is to dilute the number of pyramids 
in the 2D layers of the BaA14 structure. This is found 
in the network of the Mg,Ga, structure, where the 
condensed pyramids of the BaAl, structure are sep- 
arated and linked by additional bonds (Fig. 3(a)). Thus 
additional hexagons inside the 2D layers are introduced 
besides those which result from the stacking of the 
layers. In conclusion, triangles are no longer the pre- 
dominant structural feature for these two networks. 
The reduction of 1~~~1 and p4 is caused by an overall 
increase in the bond angles. Therefore more and more 

ANTIBONDING 

I BONDING 

Scheme 1. 
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six-membered rings appear in the structures which are 
stable at higher VEC. Additionally, kq is influenced 
by the presence of four-membered rings in the networks 
pf the BaA14, Mg,Ga, and MgGaz structures. Thus the 
interplay of three-, four- and six-membered rings con- 
trols the structural stability of the electron-deficient 
networks. 

In the diamond structure (Ga substructure of LiGa) 
the hexagons remain as the only structural feature. 
Bond angles around 110” lead to a very small c~q which 
stabilizes a structure at exactly half-full bands. Con- 
sidering the substructure of MgGa as a defect variant 
of the diamond structure, the decrease in ~14, which 
shifts the stability maximum to a VEC of five electrons 
per El3 atom, is mainly due to the reduction of the 
bond lengths. 

The El3 atoms in SrAl, are formally four bonded. 
However, a closer look at the chemical bonding in this 
substructure suggests a 7~ bonding contribution within 
the puckered six-ring layers [34]. This structure may 
also be regarded as an intermediate between the BN 
and the hexagonal diamond structure (londsdaleite) 
and the coordination of the El3 atoms proposes hy- 
bridization between sp2 and sp3. The optimal VEC is 
four electrons per El3 atom (Fig. 10(b)). This curious 
coordination is not exceptional in intermetallic networks; 
it occurs again in the substructure of Ca,Ga,, which 
consists of 2D pieces of the SrA12 substructure. The 
2D units are connected by two-bonded El3 atoms and 
the insertion of these bridging atoms is responsible for 
the rise of p4 and therefore the stabilization at higher 
VEC. The observation that higher VECs in electron- 
deficient networks are often adapted by a dilution of 
structural units typical of lower VEC also holds for 
the valency compounds, especially the Zintl phases. 

4. Conclusions 

The simple TB Hiickel theory in conjunction with 
the structural energy difference theorem has proved to 
be a successful method for studying the electronically 
driven changes in the network structures formed by 
gallium and aluminium. The networks occur in the 
elemental structures and especially in intermetallic com- 
pounds and can be divided into electron-deficient 
(VEC Q 4) and valency (VEC, 4) structures. 

The maxima of the calculated energy difference curves 
agree, with one exception, with the VECs if one assumes 
complete electron transfer from the electropositive com- 
ponents to the network substructures on the basis of 
the observed compositions of the intermetallic com- 
pounds. 

The absolute prediction of VEC-dependent stability 
ranges suffers a bit from the non-comparability of the 
amplitudes of the energy difference curves because of 

neglected interactions with the electropositive com- 
ponents. 

The method of moments can explain qualitatively 
the observed stability trends. In close-packed structures 
equilateral triangles are the only structural feature. 
The resulting large 1~~1 values stabilize such structures 
at low VEC. With increasing VEC the electron-deficient 
network structures react with the dilution of triangle- 
containing structural units in various ways in order to 
decrease 1~~1 until the valency network structures be- 
come stable (VEC > 4). These structures are first dom- 
inated by hexagons which stabilize a structure at half- 
filled bands through the small CL& A further increase 
in VEC leads to a dilution of the hexagon-containing 
structural units in order to increase pd. The contributions 
of structural features to the moments of the density 
of states are very often interrelated, which makes it 
difficult to attribute a specific structural change to the 
change in one particular moment. 

The wider application of this method to intermetallic 
networks [35] seems to be attractive. Very often it is 
difficult to identify the important building blocks in 
such structures, especially in those containing transition 
elements. The investigation of the electronic significance 
of nets in intermetallic compounds could help to extract 
reasonable building blocks for a more general under- 
standing of their structures. We feel that this concept 
can help to screen out the important substructures 
from the large number of connectivities in intermetallic 
phases. 
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